본문 바로가기

Data Science/DL 딥러닝22

딥러닝 | BERT(2019) 논문 리뷰 (*) 본 논문 리뷰 포스팅은 수리링이 직접 BERT 논문 원문을 처음부터 끝까지 읽고 작성했습니다. 포스팅을 참고하시는 경우 반드시 출처를 밝혀주시기를 미리 부탁드립니다. 감사합니다.https://arxiv.org/pdf/1810.04805본 논문 리뷰는 BERT 원문을 직접 읽고 버트의 핵심 아이디어와 구조에 대해서 살펴봅니다. 구체적인 실험과 학습 결과, 성능 지표 등에 대한 리뷰는 생략하는 점 양해 바랍니다.초록 Abstract트랜스포머의 인코더는 Recurrent(순차) 구조 없이 입력을 '통으로' 받습니다. 따라서 입력 시퀀스의 각 위치에서 왼쪽, 오른쪽 양방향(Bidirectional) 문맥을 모두 고려할 수 있습니다.이와 반대로 디코더는 마스킹을 통해 현재 시점까지의 토큰들만을 참조하는 단.. 2024. 7. 22.
딥러닝 | 트랜스포머 positional encoding 코드 구현 (문제 해결) 저는 현재 트랜스포머 전체 구조를 코드화하는 작업중에 있습니다.https://smartest-suri.tistory.com/48 딥러닝 | 트랜스포머(2017) 논문 리뷰 - Attention is all you need[참고] 본 포스팅은 수리링 본인이 Attention is all you need 논문을 처음부터 끝까지 직접 읽으며 분석하고 리뷰하여 작성했습니다. 불펌 절대 금지! 본문 내용에 잘못된 부분이 있다면 댓글 달아주smartest-suri.tistory.com지난 논문 리뷰에서 살펴본 바와 같이 트랜스포머는 '위치 인코딩(positional encoding)'을 통해 통으로 받은 입력에 문맥 정보를 추가하는데요. 본 포스팅에서는 포지셔널 인코딩을 파이토치로 구현하는 과정에서1.  제가 처음.. 2024. 7. 6.
딥러닝 | Microsoft 테이블 트랜스포머 PubTables-1m(2021) 논문 리뷰 현재 수강하고 있는 SK플래닛 T아카데미 ASAC 빅데이터 분석 & AI 전문가 양성과정 5기에서 기업 연계 프로젝트를 시작했습니다. 저는 국내 딥러닝 관련 스타트업 기업 팀에 참여해서 딥러닝 프로젝트를 진행하게 되었습니다. 주제는 Table Detection인데요.이번 기업연계 프로젝트에서 저는 최신 논문을 직접 선정해서 리뷰하고 코드화, 서비스화를 할 예정입니다. 그래서 본격적인 프로젝트에 앞서, Microsoft가 2021년 발표한 PubTables-1m dataset 논문을 읽으면서 Table Detection의 전반적인 발전 흐름과 데이터 구성, 평가 지표에 대해서 짚어보는 시간을 가졌습니다.논문을 읽으면서 궁금증이 생겨 DETR(Detection Transformer) 논문도 살펴보고, 트랜스.. 2024. 7. 4.
딥러닝 | Transformer Huggingface 탐방, pipline 가지고 놀기(객체 탐지) Transformers지난번에 트랜스포머 논문을 처음부터 끝까지 열심히 읽고 리뷰를 포스팅했었습니다.https://smartest-suri.tistory.com/48 딥러닝 | Attention is all you need - 트랜스포머(2017) 논문 리뷰[참고] 본 포스팅은 수리링 본인이 Attention is all you need 논문을 처음부터 끝까지 직접 읽으며 분석하고 리뷰하여 작성했습니다. 불펌 절대 금지! 본문 내용에 잘못된 부분이 있다면 댓글 달아주smartest-suri.tistory.com오늘은 Transformer팀의 Huggingface 페이지를 방문해서 트랜스포머의 무궁무진한 발전가능성을 체험해보겠습니다.https://huggingface.co/docs/transformers/.. 2024. 7. 2.
딥러닝 | 평가지표 dice score 범위가 [0, 1]을 벗어나는 경우 (오류 해결) Dice ScoreU-Net 코드화 작업을 통해 image segmentation에서 흔히 사용되는 'dice score'라는 평가 지표와 친숙해지게 되었습니다. 다이스 스코어는 아래와 같은 수식을 통해 계산합니다.Dice Score는 Precision과 Recall 점수를 나타내는 F1-Score와 비슷합니다. 민감도와 정밀도중에 무엇이 좋고 나쁜지는 까봐야 아는 것도 똑같고요.도식화하면 위와 같은 그림으로 나타낼 수 있어요. 여기서 X와 Y는 각각 true value와 predicted value라고 생각하면 되겠습니다. Image segmentation에서 Dice score는 predicted value와 true value 간의 유사성을 측정할 수 있는 포괄적인 평가 방식인 거죠. 예측한 마스크.. 2024. 7. 2.
딥러닝 | U-Net(2015) 논문 리뷰 02 _ PyTorch 코드 구현 https://smartest-suri.tistory.com/49 딥러닝 | U-Net(2015) 논문 리뷰[주의] 본 포스팅은 수리링이 직접 U-Net 논문 원문을 읽고 리뷰한 내용을 담았으며, 참고 문헌이 있는 경우 출처를 명시하였습니다. 본문 내용에 틀린 부분이 있다면 댓글로 말씀해 주시고, 포스smartest-suri.tistory.com지난 번 포스팅에서 리뷰한 U-Net 논문을 파이토치를 이용한 코드로 구현한 과정을 정리해 보겠습니다.1. [연습] Class 없이 한줄씩 구현직관적인 이해를 위해서 파이토치 코드로 클래스 없이 한줄씩 유넷 구조를 구현해 보도록 하겠습니다. # 먼저 필요한 모듈을 임포트 해줍니다.import torchimport torch.nn as nnimport torchvi.. 2024. 6. 30.