Peft는 Parameter-Efficient Fine Tuning의 약자로, 말 그대로 파인튜닝을 조금 더 효율적으로 할 수 있는 방법론을 의미합니다. Peft를 실현할 수 있는 종류에는 다양한 것들이 있는데, 가장 대표적으로 사용되는 방법 중 하나로는 LoRA(로라)가 있습니다.

본 포스팅에서는 LoRA의 논문 핵심 파트를 가볍게 리뷰하고, peft와 unsloth, trl 라이브러리를 이용해서 로라방식의 LLM 파인튜닝을 직접 코드로 진행해 보겠습니다.


논문

출처 :  https://arxiv.org/pdf/2106.09685

LoRA는 2021년 발표된 마이크로소프트의 논문 [LoRA: Low-Rank Adaptation of Large Language Models]에서 제안한 효율적인 파인튜닝 방법입니다. 다양한 거대 모델에 적용할 수 있고, 논문에서는 언어 모델을 중심으로 설명을 합니다.


Abstract

논문의 초록에서는 다음과 같이 로라의 핵심을 짚어서 말해주고 있어요.

We propose Low-Rank Adaptation, or LoRA, which freezes the pretrained model weights and injects trainable rank decomposition matrices into each layer of the Transformer architecture, greatly reducing the number of trainable parameters for downstream tasks.
  1. pretrained된 모델의 weight를 freeze한다.
  2. 학습 가능한 rank-decomposition, 즉 '분해된' 행렬을 트랜스포머 구조의 각 레이어마다 하나씩 주입한다.
  3. 이를 통해 downstream 태스크를 위해 파인튜닝할 때 트레이닝할 파라미터의 수를 획기적으로 줄일 수 있다.

Figure 1의 그림은 다들 많이 보셨을 것이라고 생각합니다. 파란색의 Pretrained Weights는 기존의 사전학습된 모델이 가지고 있던 웨이트맵을 의미하고, LoRA는 이는 수정할 수 없도록 freeze시킵니다. 대신 벡터 내적을 수행했을 때 W와 크기가 같아지는 주황색 A, B 행렬을 만들어서 트랜스포머 레이어 사이사이에 inject - 꽂아 넞어주고, 그 A, B 행렬을 트레이닝 시킵니다.

We hypothesize that the change in weights during model adaptation also has a low “intrinsic rank”, leading to our proposed Low-Rank Adaptation (LoRA) approach. LoRA allows us to train some dense layers in a neural network indirectly by optimizing rank decomposition matrices of the dense layers’ change during adaptation instead, while keeping the pre-trained weights frozen, as shown in Figure 1.

LoRA는 기존의 웨이트맵 행렬을 분해(rank decomposition)시켜서 기존의 freeze된 웨이트맵에 더해주는 방식으로 간접적으로 업데이트 합니다. 예를 들어서 W의 크기가 (10, 10)이고 분해된 행렬 A, B의 크기는 각각 (10, 2)와 (2, 10)이라고 해 봅시다.

  • W의 파라미터 수는 10*10 = 100(개) 입니다.
  • A와 B의 파라미터 수는 각각 20개씩으로 총합 40개입니다.
  • LoRA를 사용하면 기존의 100개 파라미터는 freeze시키고, 대신 분해된 행렬(A, B)의 40개 파라미터만 트레이닝하면 됩니다. A, B를 행렬곱하면 (10, 10) 사이즈가 되므로 기존의 웨이트맵에 더해줄 수 있습니다. 따라서 학습시켜야 할 파라미터의 수가 full-finetuning에 비해서 줄어들게 되고, 리소스를 효율적으로 활용할 수 있습니다.

1. Introduction

논문의 서론(Introduction)에서는 아래와 같이 로라의 핵심 장점을 요약해서 말하고 있습니다.

  1. 사전 학습된 모델의 파라미터는 동결시키고, 필요한 task에 따라 A와 B만 학습시키면 되기 때문에, 사전학습된 거대 모델을 다양한 downstream에 더 잘 활용할 수 있습니다.
  2. LoRA를 사용하면 inject한 low-rank matrices만 최적화시키면 되기 때문에 학습이 매우 효율적이고, 진입에 대한 하드웨어 장벽을 최대 3배까지 낮춰 준다고 합니다.
  3. 기존의 fully fine-tuning과 비교했을 때 inference latency(input이 들어가서 모델이 예측을 하기까지 걸리는 시간)이 없는 장점이 있습니다 - 따라서 아주 간단한 선형 구조만으로 freeze된 기존의 웨이트와 새롭게 학습시킨 웨이트를 병합할 수 있습니다.
  4. LoRA는 prefix 기반 접근과 함께 사용될 수 있습니다.

2. Problem Statement

논문의 2장 PROBLEM STATEMENT에서는 수식과 함께 자세한 설명을 합니다.

(1) 기존의 최대우도법 목적함수

로라 기법을 적용하지 않은 full fine-tuning에서는 pre-trained된 웨이트맵을 불러와서 목적함수를 업데이트하는 최대우도법(1)을 사용합니다. 즉, 최대우도법을 이용해 모델의 전체 파라미터 Φ 를 업데이트합니다. 저자들은 이렇게 모든 파라미터를 업데이트하는 방식보다 효율적인 LoRA를 제시하는데요. LoRA를 이용해 일부분의 파라미터만 업데이트하는 목적식은 다음과 같습니다.

(2) LoRA 목적함수

기존의 model 파라미터인 를 이용해 forward를 진행하고 얻어지는 (기울기)를 이용해 backpropagation을 진행할 때, LoRA의 파라미터 를 이용합니다. 논문에 따르면 LoRA로 업데이트하는 파라미터 Θ 의 크기인 | Θ | 가 기존의 full fine-tuning으로 업데이트하는 파라미터 Φ 의 크기인 | Φ | 의 0.01%라고 합니다. 그만큼 훨씬 효율적으로 튜닝이 가능하며, 각 downstream task마다 다른 LoRA layer를 사용할 수 있기 때문에 목적에 맞는 파인튜닝된 모델을 효율적으로 생산할 수 있는 것입니다.


허깅페이스 & LoRA

저는 논문 뿐만 아니라 라이브러리 docs 보는 것도 아주 좋아하기 때문에 - 보기 좋게 정리가 잘 되어 있어서 특히 허깅페이스 좋아합니다 - 로라와 관련된 허깅페이스 문서들을 조금 더 살펴보도록 하겠습니다.

https://huggingface.co/docs/diffusers/training/lora

 

LoRA

This is experimental and the API may change in the future. LoRA (Low-Rank Adaptation of Large Language Models) is a popular and lightweight training technique that significantly reduces the number of trainable parameters. It works by inserting a smaller nu

huggingface.co

허깅페이스의 Diffuser Docs에서는 LoRA를 a popular and lightweight training technique that significantly reduces the number of trainable parameters라고 설명하고 있습니다. 또한 논문에서 미리 살펴본 바와 같이 It works by inserting a smaller number of new weights into the model and only these are trained - 적은 수의 새로운 웨이트맵을 Insert하고, 딱 그것들만 학습시킨다는 점을 짚어주고 있습니다.

로라는 가장 처음에 언어 모델에 고안되었지만, 그 확장성과 용이성으로 인해 많은 Diffusion 모델에 사용되고 있다고 합니다. 실제로 저도 Stable Diffusion을 파인튜닝하여 text-to-image 모델을 구현하는 데 로라 기법을 사용한 경험이 있습니다.


https://huggingface.co/docs/peft/conceptual_guides/adapter

 

Adapters

Adapter-based methods add extra trainable parameters after the attention and fully-connected layers of a frozen pretrained model to reduce memory-usage and speed up training. The method varies depending on the adapter, it could simply be an extra added lay

huggingface.co

허깅페이스의 PEFT docs 페이지의 'Adapters'에서도 LoRA에 관해 이야기하고 있습니다. 위 애니메이션은 우리가 논문에서 살펴보았던 LoRA의 행렬 분해 방식을 잘 보여주고 있습니다.

In principle, LoRA can be applied to any subset of weight matrices in a neural network to reduce the number of trainable parameters. However, for simplicity and further parameter efficiency, LoRA is typically only applied to the attention blocks in Transformer models. The resulting number of trainable parameters in a LoRA model depends on the size of the update matrices, which is determined mainly by the rank r and the shape of the original weight matrix.

이론적으로 LoRA는 neural-network 구조를 가지는 모델의 어떤 부분에든지 적용될 수 있지만, 간소화와 파라미터 효율성을 고려하여 보통 트랜스포머 구조의 attention layer에 적용되는 것이 일반적이라고 합니다. 나중에 코드에서 다시 살펴보겠지만, 분해된 행렬의 사이즈를 정의하는 하이퍼 파라미터로는 rank r이 있습니다. Figure 1 이미지의 주황색 부분에 잘 보면 r이라고 써있습니다 :)

r의 값이 작을수록 계산은 쉽고 빠르겠지만 downstream task에 따른 디테일한 학습이 어려울 수 있고, r의 값이 클수록 디테일한 파라미터 업데이트가 가능하지만 그만큼 분해 행렬의 파라미터 수도 많아지므로 계산량이 늘어납니다. 따라서 주어진 Task에 따라 적절한 r값을 찾아내고 설정하는 것이 모델러의 중요한 임무중 하나라고 할 수 있겠습니다.


unsloth

huggingface 공식 peft docs 페이지, unsloth 공식 깃허브, 허깅페이스 블로그 글 - 총 3가지 레퍼런스를 참고하여 최신 LLaMA 3.1-8B 모델을 직접 LoRA 방식으로 파인튜닝 해보도록 하겠습니다.

  1. https://huggingface.co/docs/peft/package_reference/lora
  2. https://github.com/unslothai/
  3. https://huggingface.co/blog/Andyrasika/finetune-unsloth-qlora
 

Unsloth AI

Our mission is to make LLMs for everyone 🦥. Unsloth AI has 6 repositories available. Follow their code on GitHub.

github.com

Unsloth는 대형 언어 모델(LLM)들의 파인튜닝과 훈련을 가속화하고 메모리 사용을 최적화하기 위한 오픈 소스 라이브러리입니다. 특히 Llama, Mistral, Phi, Gemma 등의 LLM 모델들을 2-5배 빠르게 훈련시키고 메모리 사용량을 최대 80%까지 줄일 수 있습니다​. 실제로 사용해본 결과, 지인짜 빠르고 편리합니다. 강추...

위 공식 깃허브에서 Finetune for Free 아래의 Llama 3.1 (8B) Free Notebooks 코드를 클릭하면 Colab 코드가 실행됩니다. 저는 코랩 코드를 참고하여 로컬 On-Premise GPU에서 진행하였습니다. 저처럼 로컬에서 진행하시는 경우 공식 깃허브를 참고하여 unsloth 라이브러리를 사용하기 위한 환경설정과 다운로드를 완료한 뒤에 코드를 실행하시기 바랍니다.

LoraConfig

먼저 간단하게 peft 라이브러리에서 설정할 수 있는 LoRA Configuration 하이퍼파라미터 3가지만 짚고 넘어가 보겠습니다.

  • r (int) — Lora attention dimension (the “rank”)
    • 위에서 살펴본 r - rank decomposition의 r값을 설정, r이 클수록 분해 행렬의 사이즈가 커집니다.
    • 예를 들어, 만약 원래의 파라미터 행렬이 m×n 크기라면, A m×r, Br×n 크기가 됩니다.
  • lora_alpha (int) — The alpha parameter for Lora scaling 
    • lora_alpha는 직접적으로 로라 페이퍼 원문에서 언급된 적은 없지만 중요한 역할을 하는 하이퍼파라미터입니다. lora_alpha 파라미터는 low-rank decomposition 행렬이 기존의 고정된(weight-frozen) 모델 파라미터에 합쳐질 때, 그 비율을 결정합니다. 즉, 분해된 저차원 행렬의 영향을 원래 모델에 얼마나 반영할지를 조절하는 것이 바로 lora_alpha 파라미터입니다.
    • 참고한 허깅페이스 블로그에서는 the strength of the applied LoRA라고 설명하고 있습니다.
  • lora_dropout (float) — The dropout probability for Lora layers.

Unsloth 이용 llama3.1-8B 파인튜닝 (QA task)

from unsloth import FastLanguageModel
import torch
max_seq_length = 2048
dtype = None

unsloth 라이브러리의 FastLanguageModel 클래스를 이용하여 라마3.1-8B모델을 불러올텐데요.

load_in_4bit = False # 4비트로 양자화된 모델을 불러올 경우 True로 설정 -> 조금 더 빨라짐

model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "unsloth/Meta-Llama-3.1-8B",
    max_seq_length = max_seq_length,
    dtype = dtype,
    load_in_4bit = load_in_4bit
)

저는 load_in_4bit을 False로 설정하고 양자화되지 않은 기본 라마3.1-8B을 불러왔습니다. 코랩 T4 등의 작은 GPU로 실행하시는 경우 이 값을 True로 설정하셔서 가볍게 돌리시는 것을 추천합니다.

model = FastLanguageModel.get_peft_model(
    model,
    r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
    target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
                      "gate_proj", "up_proj", "down_proj",],
    lora_alpha = 16,
    lora_dropout = 0, # Supports any, but = 0 is optimized
    bias = "none",    # Supports any, but = "none" is optimized
    # [NEW] "unsloth" uses 30% less VRAM, fits 2x larger batch sizes!
    use_gradient_checkpointing = "unsloth", # True or "unsloth" for very long context
    random_state = 1004,
    use_rslora = False,  # We support rank stabilized LoRA
    loftq_config = None, # And LoftQ
)

위에서 살펴본 LoRA 관련 하이퍼파라미터들이 보입니다.

새로운 하이퍼파라미터로 use_rslora가 있는데요. RsLoRA는 LoRA 방식의 변형으로, 랭크를 안정화시키는 기법을 통해 효과적으로 파인튜닝을 할 수 있는 방법이라고 합니다. RsLoRA는 학습 과정 중에 랭크를 동적으로 조절하여 최적화하는데, 고정된 랭크를 사용하는 기존 LoRA 방식에 비해 더 나은 성능을 도출할 수 있다고 하네요. 저는 우선 False로 설정했고, 나중에 True로 변환하여 성능을 비교해보고자 하였습니다. 또한 코랩과 같은 제한된 환경에서 실행하는 경우에도 False로 설정하는것이 낫겠습니다.

또한 loftq_config의 경우 모델의 백본 가중치를 양자화하고 LoRA 계층을 초기화하는 방법을 정의한다고 합니다. 저는 모델을 로드할 때 load_in_4bit을 False로 두어 양자화되지 않은 기본 모델을 로드했으며, loftq_config 역시 None으로 설정하여 모델의 백본 가중치를 양자화하지 않는 것으로 설정하였습니다.

from datasets import load_dataset
dataset = load_dataset("ruslanmv/ai-medical-chatbot", split = "train")

prompt = """You are a professional medical doctor. Based on the below context, generate answer for the question.

### Description:
{}

### Patient:
{}

### Doctor:
{}"""


EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN
def formatting_prompts_func(examples):
    instructions = examples["Description"]
    inputs       = examples["Patient"]
    outputs      = examples["Doctor"]
    texts = []
    for instruction, input, output in zip(instructions, inputs, outputs):
        # Must add EOS_TOKEN, otherwise your generation will go on forever!
        text = prompt.format(instruction, input, output) + EOS_TOKEN
        texts.append(text)
    return { "text" : texts, }
pass

dataset = dataset.train_test_split(test_size=0.01)

dataset_train = dataset['train']
dataset_test = dataset['test']

dataset_train = dataset_train.map(formatting_prompts_func, batched = True,)
dataset_test = dataset_test.map(formatting_prompts_func, batched = True,)

저는 허깅페이스에서 medical chatbot QA task용으로 준비된 데이터셋을 사용해서 위와같이 전처리과정을 거쳤습니다. train 데이터는 총 254,346개이며 test 데이터는 총 2,570개가 있습니다.

from trl import SFTTrainer
from transformers import TrainingArguments
from unsloth import is_bfloat16_supported

trainer = SFTTrainer(
    model = model,
    tokenizer = tokenizer,
    train_dataset = dataset_train,
    dataset_text_field = "text",
    max_seq_length = max_seq_length,
    dataset_num_proc = 2,
    packing = False, # Can make training 5x faster for short sequences.
    args = TrainingArguments(
        per_device_train_batch_size = 2,
        gradient_accumulation_steps = 4,
        warmup_steps = 5,
        num_train_epochs = 1,
        max_steps = 60,
        learning_rate = 2e-4,
        fp16 = not is_bfloat16_supported(),
        bf16 = is_bfloat16_supported(),
        logging_steps = 1,
        optim = "adamw_8bit",
        weight_decay = 0.01,
        lr_scheduler_type = "linear",
        seed = 1004,
        output_dir = "outputs",
    ),
)

다음으로 trl 라이브러리의 SFTTrainer 클래스를 사용해서 superfised fine tuning(SFT)을 진행합니다. 

  • per_device_train_batch_size: 각 디바이스(예: GPU)당 훈련에 사용할 배치 크기- 모델이 한 번의 훈련 스텝에서 처리할 데이터 샘플의 수를 의미. 크기가 클수록 더 많은 메모리가 필요하며, 일반적으로 크기가 클수록 더 나은 일반화 성능을 제공함.
  • gradient_accumulation_steps: 그래디언트 누적 단계의 수
  • warmup_steps: 학습률이 선형적으로 증가하는 워밍업 스텝 수 - 모델이 학습 초반에 너무 큰 학습률로 인해 불안정해지는 것을 방지하는 역할. 초기에는 낮은 학습률로 시작하여 점진적으로 증가시키도록 함.
  • is_bfloat16_supported()
    • is_bfloat16_supported() : Unsloth 라이브러리에서 제공하는 함수 - 현재 사용 중인 하드웨어가 bfloat16(Brain Floating Point 16) 정밀도를 지원하는지 여부를 확인하는 역할
    • bfloat16이 지원되는 경우, 이를 사용하여 메모리 사용량을 줄이고 훈련 속도를 높이는 것이 가능 (지원되지 않는 경우, fp16 또는 fp32를 사용)
    • fp16과 bf16은 상호 배타적인 설정으로 동시에 사용할 수 없음
  • logging_steps : 로그를 기록할 스텝 간격
  • optim : 사용할 옵티마이저의 종류 ("adamw_8bit"는 AdamW 옵티마이저를 8비트 정밀도로 사용하여 메모리 효율성을 높이고 계산 비용을 줄임)
  • weight_decay : 가중치 감쇠(L2 정규화) 계수 (모델의 복잡성을 줄이고 과적합을 방지하기 위해 가중치 값을 점진적으로 감소시키는 역할)
  • lr_scheduler_type: 학습률 스케줄러의 유형 (linear는 학습률을 선형적으로 감소)
  • output_dir : 훈련 결과를 저장할 디렉토리 경로
trainer_stats = trainer.train()

학습이 완료되었습니다.

def inference_i(i):
    FastLanguageModel.for_inference(model) # Enable native 2x faster inference
    question = dataset_test[i]['Description']
    inputs = tokenizer(
    [
        prompt.format(
            "Answer the question truthfully, you are a medical professional.", # instruction
            question, # input
            "", # output - leave this blank for generation!
        )
    ], return_tensors = "pt").to("cuda")

    outputs = model.generate(**inputs, max_new_tokens = 1024, use_cache = True)
    tokenizer.batch_decode(outputs)

    predict = tokenizer.batch_decode(outputs)[0].split("###")[-1]
    truth = dataset_test[i]['Doctor']

    print("-----------------------")
    print(f"question : {question}")
    print("-----------------------")
    print(f"inference : {predict}")
    print("-----------------------")
    print(f"label answer : {truth}")
    print("-----------------------")
    
    return question, predict, truth

위와 같이 dataset_test의 i번째 데이터에 대해 inference를 수행할 수 있는 함수를 직접 작성했구요.

question, predict, truth = inference_i(0)

요런식으로 실행하면 question, inference 결과, 기존의 label answer값을 확인할 수 있습니다.


question : High BP, have consistent cough with chest pain, traces of blood in phlegm. Normal chest x-ray, on BP medicines. Cause?
[데이터셋의 답변 예시] label answer : Hello there, In addition to the possibilities of asthma, chest infection which have been ruled out by X Ray etc, another possibility is GERD(gastro esophageal reflux disease/gastritis). You might need to take a course of pantoprazole/omeprazole , if that is the case. It is possible that the stress(you said you were worried about your brother's son) could have caused GERD/gastritis.

1. I would advise you to have frequent small meals.
2. Avoid spicy,deep fried,fatty food and carbonated beverages.
3.Do relaxation exercises/meditation.
4. Avoid sleeping/lying down immediately after a meal. Wait for 2 hours before lying down after a meal.
5.Avoid smoking/alcohol. Hope this helps.

Please let me know if you need any further advise. Regards, Dr.Divya Kuttikrishnan

위와 같은 질문을 던졌을 때, 파인튜닝한 llama3.1-8B모델은 아래와 같이 답변했습니다.

Hello, Thanks for writing to us. Chest pain with cough is very serious and needs to be investigated. Chest X-ray is a very basic investigation and needs to be followed by a CT scan of the chest. CT scan is a very important investigation and will help in identifying the cause of the chest pain. If the CT scan is normal, then you need to get an ECG and echocardiogram done. These will help in identifying the cause of the chest pain. I hope this helps. Take care. Regards, Dr. Rakesh Kumar, General & Family Physician

데이터셋의 예시 답변과 비교하면 풍부함이 조금 떨어지긴 하나, medical QA로서의 의무는 어느정도 수행하고 있다고 평가할 수 있을 것 같습니다. 그렇다면 파인튜닝을 하나도 거치지 않은 기본 llama3.1-8B모델은 같은 질문에 대해서 어떻게 대답할까요?

ollama를 통해 터미널로 QA를 실행해본 모습

medical QA datset으로 파인튜닝한 모델에 비하면 기본 모델은 medical QA보다는 LLM스러운 조금 더 일반적이고 풍부한 대답을 보여주는 것 같습니다. 솔직히 파인튜닝 안한게 더 나아보입니다. 인삿말이나 마무리말 정도는 프롬프팅으로도 충분히 구현할 수 있으니까요. 파인튜닝이 반드시 성공적으로 끝나는 것은 아니다-라는 좋은 예시가 되겠습니다...(ㅋㅋㅋㅋ)

파인튜닝을 통해 기본 백본 모델보다 나은 결과를 도출하기 위해서는 하이퍼파라미터 튜닝과 최적화 과정을 거쳐야 할 것으로 생각되구요. 또 제가 의학 전문가가 아니다보니 퀄리티 측면에서 무엇이 더 낫다고 평하기 조금 애매한 부분이 있어서, 실제 프로젝트에서는 도메인 관련한 전문가와의 협업이 필수적으로 요구될 것으로 생각됩니다.


파인튜닝을 통해 downstream task에 적용할 수 있는 더 나은 모델을 만드는 과정은 제가 지금 구축하고 있는 실제 LLM 프로젝트에서 조금더 고민해보는것으로 하고, 본 포스팅은 이정도로 마무리를 하겠습니다 :-) 본 포스팅을 통해 LoRA, Peft, Unsloth를 통한 효율적인 파라미터 튜닝 방법에 대해 고찰해볼 수 있는 좋은 기회였습니다.

감사합니다 :)

현재 수강하고 있는 SK플래닛 T아카데미 ASAC 빅데이터 분석 & AI 전문가 양성과정 5기에서 기업 연계 프로젝트를 시작했습니다. 저는 국내 딥러닝 관련 스타트업 기업 팀에 참여해서 딥러닝 프로젝트를 진행하게 되었습니다. 주제는 Table Detection인데요.

이번 기업연계 프로젝트에서 저는 최신 논문을 직접 선정해서 리뷰하고 코드화, 서비스화를 할 예정입니다. 그래서 본격적인 프로젝트에 앞서, Microsoft가 2021년 발표한 PubTables-1m dataset 논문을 읽으면서 Table Detection의 전반적인 발전 흐름과 데이터 구성, 평가 지표에 대해서 짚어보는 시간을 가졌습니다.

논문을 읽으면서 궁금증이 생겨 DETR(Detection Transformer) 논문도 살펴보고, 트랜스포머 허깅페이스를 방문해 객체 탐지 pipeline으로 여러 가지 실험을 해보기도 했는데요. ( 포스팅 : https://smartest-suri.tistory.com/52  ) 이렇게 논문을 기반으로 딥러닝을 연구하고 아이디어를 확장해나가는 것이 되게..... 변태같이 재밌네요.........^__^

 

딥러닝 | Transformer Huggingface 탐방, pipline 가지고 놀기(객체 탐지)

Transformers지난번에 트랜스포머 논문을 처음부터 끝까지 열심히 읽고 리뷰를 포스팅했었습니다.https://smartest-suri.tistory.com/48 딥러닝 | Attention is all you need - 트랜스포머(2017) 논문 리뷰[참고] 본 포

smartest-suri.tistory.com

이번 PubTables-1m 논문 리뷰는 Table Detection의 발전 과정, 기본 아이디어와 중요 사항 등을 체크할 수 있었던 좋은 시간이었습니다. 그럼 리뷰 들어가겠습니다!



PubTables-1M: Towards comprehensive table extraction from unstructured documents
https://arxiv.org/pdf/2110.00061v3


0. 초록 Abstract

(중략) we develop a new, more comprehensive dataset for table extraction, called PubTables-1M. PubTables-1M contains nearly one million tables from scientific articles, supports multiple input modalities, and contains detailed header and location information for table structures, making it useful for a wide variety of modeling approaches.

(뭔들 아니겠냐만은...) Table detection task 분야에서 당시 가장 큰 문제가 되는 것은 '데이터'였고, 테이블 트랜스포머 팀은 그 해결방안으로 'PubTales-1M'(이하 펍테이블)이라는 데이터셋을 공개하는데요. 펍테이블은 과학 기사에서 추출한 약 1백만 여개의 테이블을 포함하며, multiple input modalities를 지원하는 데이터 셋입니다. 또한 표 구조에서 디테일한 header 정보나 위치 정보를 포함하고 있기 때문에 다양한 목적으로 사용될 수 있습니다.

It also addresses a significant source of ground truth inconsistency observed in prior datasets called oversegmentation, using a novel canonicalization procedure. We demonstrate that these improvements lead to a significant increase in training performance and a more reliable estimate of model performance at evaluation for table structure recognition. 

특히 이전 데이터셋에서 흔히 발생하는 과분할, 과세분화(oversegmentation) 문제를 해결했다고 하는데요. 이를 위해 새로운 정규화 절차(canonicalization procedure)를 도입했습니다. 결과적으로 학습이 잘되고 모델 성능이 좋더라!라고,,, 모든 연구 논문의 빼놓을 수 없는 주장을 하고 있습니다. (ㅋㅋㅋㅋ)

Further, we show that transformer-based object detection models trained on PubTables-1M produce excellent results for all three tasks of detection, structure recognition, and functional analysis without the need for any special customization for these tasks.

테이블 트랜스포머 팀은 여기서 약간은 애매한 닉값을 하는데, 트랜스포머를 기반으로 한 object detection 모델을 가지고 테이블 탐지, 구조 인식, 기능 분석이라는 3가지 과업을 아주 잘 수행했다고 합니다. 후에 얘기하겠지만, 그냥 갖다 써서 실험만 했거든요. 데이터만 새로 생성했고 아쉽게도 새로운 모델 구조까지 제안하지는않습니다. 그래서 테이블 트랜스포머,,,,,,라고 명명하긴 조금 짜치지 않나.. 하는 생각을 감히 하기도 했는데요. 그래도 이렇게 새로 구축한 데이터셋으로 학습한 최신 pre-trained model card를 배포하고 있으니 어쨌든 닉값을 하기는 합니다!

배우는 입장에서... 기존의 문제점을 해결하기 위해 새로운 모델 구조를 제안하는 것이 가장 혁신적, 혁명적으로 느껴지긴 합니다. 시간과 노력같은 비용뿐만 아니라 창의적인 아이디어에 재능까지 필요한 일이기 때문이죠. 하지만 때론 이렇게 '데이터의 품질'을 향상시키는 것또한 근본적인 문제 해결의 한가지 방안이 될 수가 있습니다. 어쩌면 모델 구조 변경보다 더 나은 획기적인 성능 향상을 불러 오기도 하죠. 데이터셋 논문을 굳이 리뷰하는 이유도 이와 같은 이유에서입니다. (아, 짜친다고 한거 취소할게요)


1. 서론 Introduction

The problem of inferring a table’s structure from its presentation and converting it to a structured form is known as table extraction (TE). (중략...) 

표의 구조를 추론하고 이를 구조화된 형태로 변환하는 문제를 표 추출(Table Extraction, TE)이라고 합니다. TE는 아래와 같이 세 가지 하위 작업으로 구성됩니다.

  • 표 탐지 (Table Detection, TD)
  • 표 구조 인식 (Table Structure Recognition, TSR)
  • 기능 분석 (Functional Analysis, FA)

Fig 2.

The primary advantage of DL methods is that they can learn to be more robust to the wide variety of table presentation formats. However, manually annotating tables for TSR is a difficult and time-consuming process [7]. 

딥러닝을 통한 TE는 다양한 표 형식을 탄탄(robust)하게 학습할 수 있다는 장점이 있습니다. 그런데 딥러닝 - 지도 학습(Supervised Learning) - 에는 labeling이 필요하잖아요? TSR(Table Structure Recognition)을 하려면 사람이 일일이 레이블링(annotating)을 해줘야 하는데, 이게 여간 번거로운 게 아니다 보니, 항상 데이터와 관련된 문제점이 존재했던 모양이에요. 아무래도 데이터 확보 자체가 쉽지 않았겠죠.

To overcome this, researchers have turned recently to crowd-sourcing to construct larger datasets [9,22,23]. These datasets are assembled from tables appearing in documents created by thousands of authors, where an annotation for each table’s structure and content is available in a markup format such as HTML, XML, or LaTeX.

문제 해결을 위해서 기존 연구진들은 크라우드 소싱이란 걸 활용해서 더 큰 데이터 세트를 구축했다고 합니다. 이렇게 만들어진 데이터셋은 각 표의 구조와 내용에 대한 annotation을 HTML, XML, LaTeX 같은 마크업 형식으로 제공하는 특징이 있는데요.

* 크라우드 소싱 

- 전문가가 풀지 못한 문제를 대중이 풀다
- 군중(crowd)과 아웃소싱(outsourcing)의 합성어
- 비용 효율적이고 빠른 문제 해결을 가능하게 함

- 생산과 서비스의 과정에 소비자 혹은 대중을 참여시켜 더 나은 아이디어, 제품, 서비스를 만들고 수익을 참여자와 공유하고자하는 방법을 칭한다. [참고 : 기획재정부 시사경제용어사전]
While crowd-sourcing solves the problem of dataset size, repurposing annotations originally unintended for TE and automatically converting these to ground truth presents its own set of challenges with respect to completeness, consistency, and quality. 

크라우드 소싱이 데이터셋의 사이즈 - 즉, 수량을 확보하는 데에는 도움이 되긴 했는데, 사실 이렇게 얻은 annotation이 애초에는 TE를 목적으로 한 게 아니었고, 그래서 TE용으로 적합하지가 않았습니다. 

Another significant challenge for the use of crowdsourced annotations is that these structure annotations encoded in markup often exhibit an issue we refer to as oversegmentation. Oversegmentation occurs in a structure annotation when a spanning cell in a header is split into multiple grid cells.

특히 oversegmentation(과세분화) 문제가 있었습니다. 과세분화는 header(머리글)의 셀이 여러 격자 셀로 나뉘는 경우를 말합니다. 과세분화가 발생해도 보기에는 문제가 없어보입니다만, 딥러닝 모델 학습과 평가를 위한 정답 데이터로 사용될 때는 큰 문제가 될 수 있습니다.

The first issue is that an oversegmented annotation contradicts the logical interpretation of the table that its presentation is meant to suggest. (중략....) would and does lead to ambiguous and inconsistent ground truth, due to there then being multiple possible valid interpretations for a table’s structure, such as in Fig. 3. This violates the standard modeling assumption that there is exactly one correct ground truth annotation for each table.

크게 표의 구조를 올바르게 해석하지 못하는 문제점, 표의 구조에 대해 여러 가지 해석을 내놓는 문제점이 발생할 수 있습니다. 그래서 ground truth가 애매 모호해지고, 1개의 정해진 정답이 있다는 가정을 위반하게 됩니다. 따라서 과세분화된 주석이 포함된 데이터셋은 학습 중 모순된 피드백을 제공하고 평가 시 실제 성능을 과소평가하게 만듭니다. 


PubTables-1M (주요 내용)

We introduce a novel canonicalization procedure that corrects oversegmentation and whose goal is to ensure each table has a unique, unambiguous structure interpretation.
  • 새로운 canonicalization(정규화) 방법을 통해 oversegmentation(과세분화) 문제를 바로잡고 하나의 테이블에 대해 명확한 하나의 구조 해석을 내놓도록 하는 방법을 보여준다고 합니다.
We show that data improvements alone lead to a significant increase in performance for TSR models, due both to improved training and a more reliable estimate of performance at evaluation.
  • (새로운 모델 구조 제안 없이) 좋은 데이터를 쓰는 것만으로도 TSR(Table Structure Recognition) 과업에 얼마나 큰 성능 향상을 보일 수 있는지 보여준다고 합니다.
Finally, we apply the Detection Transformer (DETR) [2] for the first time to the tasks of TD, TSR, and FA, and demonstrate how with PubTables-1M all three tasks can be addressed with a transformer-based object detection framework without any special customization for these tasks.
  • Detection Transformer(DETR)을 TD, TSR, FA 과업에 사용한 첫 사례로서, PubTables-1M 데이터랑 DETR이랑 같이 쓰면 얼마나 괜찮은지 보여준다고 합니다. (특별한 모델 변형이나 새로운 구조 제안은 없음 - 데이터셋이 중심이 되는 논문임을 확인)

2. 관련 연구 Related Work 

해당 부분은 chat-gpt 4o를 통해 간단히 정리만 하고 넘어가도록 하겠습니다.

구조 인식 데이터셋

  • ICDAR-2013: 표 탐지(TD), 표 구조 인식(TSR), 기능 분석(FA)을 모두 다루는 최초의 데이터셋으로, 규모는 작으며 TD와 TSR을 위한 248개의 표와 FA를 위한 92개의 표로 구성됨.
  • 대규모 데이터셋: TableBank, SciTSR, PubTabNet, FinTabNet 등은 크라우드 소싱 주석을 사용하여 확장되었으나, 여전히 완전성, 경계 상자, 과세분화 문제를 가지고 있음.

모델링 접근법

  • 일반 방법: 객체 탐지, 이미지-텍스트 변환, 그래프 기반 접근법 등이 사용됨.
  • 문제점: 포괄적인 훈련 데이터의 부족으로 인해 기존 모델의 성능이 낮음.
  • 특화된 방법: 다양한 경우를 처리하기 위해 맞춤형 파이프라인과 전문화된 방법이 사용되었으나, 아직 보편적이고 성능이 높은 솔루션은 존재하지 않음.

3. 데이터셋 PubTables-1M

마이크로소프트는 PubTables-1M 개발을 위해 수백만 개의 공개 과학 기사를 제공하는 PMCOA 코퍼스 선택했습니다. 각 기사는 기사 내용을 시각적으로 보여주는 PDF 파일, 내용 설명과 요소의 계층적 구성을 제공하는 XML 파일로 구성되는데요. 각 표의 내용과 구조는 표준 HTML 태그를 사용합니다.

  • 하지만 이것도 역시 애초에 TE 모델링의 레이블로 의도하고 만든 데이터가 아니었기 때문에
    • 예를 들어서 두 문서가 같은 표를 가지고 있을 때에 두 문서 간의 직접적인 대응 관계를 알 수도 없고, 문서 내에서 표의 공간적 위치도 특별히 제공되지 않는 한계점이 발생했습니다.
  • 또 품질 측면에서도 완벽하지 못했는데
    • 예를 들어서 주석이 달린 텍스트 내용이 PDF에 표시된 텍스트 내용과 정확히 일치한다고 보장할 수도 없었고, 가끔 일부 라벨(row header 등)은 아예 주석 처리되지 않기도 했습니다.

논문에서는 이러한 문제점을 어떻게 해결해서 PubTables-1M 데이터셋을 구축했는지 아래와 같이 단계별로 나누어 설명합니다.


[3. 1.] Alignment

PDF와 XML의 텍스트 내용을 일치시켜서 대응관계를 만들어주는 단계

  1. PDF 문서에 있는 모든 문자에 대해 bounding box 처리를 합니다. ([xmin, ymin, xmax, ymax]의 공간적 위치로 표시)
  2. XML 태그에서 표의 텍스트를 추출합니다. (예) coffee 추출
  3. PDF 문서의 bounding box를 합쳐 일치하는 문자열이 있는지 확인하고, 만약 있다면 align을 시켜줍니다. 이 때 Needleman-Wunsch 알고리즘을 사용합니다. (예) 합쳐서 coffee가 되는 부분이 있는지 확인 -> 발견시 align
  4. 이 과정을 통해 PDF 문서의 텍스트와 XML/HTML에서 추출한 표 내용 텍스트를 서로 pairing(alinging) 하게 됩니다.
Needleman-Wunsh 알고리즘 (간단히)
: 두 시퀀스를 비교하여 최적의 정렬을 찾는 알고리즘으로, 주로 생물유전학에서 사용됨. 본 데이터셋에서는 PDF 문서의 텍스트 시퀀스와 XML/HTML 텍스트 시퀀스를 정렬하여, 두 문서 간의 텍스트 대응 관계를 확립하고 각 텍스트의 위치 정보를 연결하기 위해 사용되었음.

[3. 2.] Completion

Alignment 이후 표 전체와 각 행, 열에 bounding box를 쳐서
spatial annotation(공간 주석)을 '완성(Completion)'하는 단계

  • 표 (entire table)
    • 표의 경계 상자는 모든 텍스트 셀 경계 상자의 합집합(union)으로 정의됩니다.
  • 행 (row)
    • 가로 : 각 행의 xmin과 xmax(가로 길이)는 표의 xmin과 xmax로 정의하여 모든 행이 동일한 수평 길이를 갖도록 합니다.
    • 세로 : 각 행의 ymin과 ymax(세로 길이)는 해당 행에서 시작하거나 끝나는 모든 셀의 텍스트 셀 경계 상자의 합집합으로 정의됩니다.
  • 열 (column)
    • 가로 : 각 열의 ymin과 ymax는 표의 ymin과 ymax로 정의하여 모든 열이 동일한 수직 길이를 갖도록 합니다.
    • 세로 : 각 열 n의 xmin과 xmax는 해당 열에서 시작하거나 끝나는 모든 셀의 텍스트 셀 경계 상자의 합집합으로 정의됩니다.
  • 그리드 셀 (grid cell)
    • 그리드 셀은 해당 셀의 행 경계 상자와 열 경계 상자의 합집합(교차 부분 - intersection)으로 정의됩니다. 빈 셀에도 그리드 셀이 정의됩니다.

[3. 3.] Canonicalization

oversegmentation을 바로잡는 단계

canonicalization을 검색하면 '정규화, 표준화, 정상화'정도로 번역이 되는데요. 제가 느끼기에 제일 직관적인 번역은 '정상화'라고 생각했습니다. 논문에 따르면, 간단히 말해 canonicalization이란 특정 조건 하에서 인접한 셀을 병합하는 것을 의미합니다. 아래 사진을 보면 이해가 빠른데요.

이렇게 과세분화된 셀(a)을 서로 병합해서 Canonical(b) - 정상, 표준으로 되돌려놓는 작업을 의미합니다. 

알고리즘 파트는 간단히만 정리하고 넘어가도록 하겠습니다.

example : Header

  • Wang 모델에 따르면 모든 표의 header(머리말)은 트리 구조를 따릅니다.
  • 표의 각 열(column)은 열 헤더 트리의 고유한 리프 노드에, 각 행(row)은 행 헤더 트리의 고유한 리프 노드에 해당합니다.
  • 열이나 행 헤더가 부분적으로 주석 처리되거나 주변에 빈 셀이 있는 경우 이를 확장하여 추가적인 열이나 행을 포함시키는 확장 단계를 거칩니다.
  • 열 헤더와 행 헤더의 인접한 빈 셀들을 재귀적으로 병합하여 일관성을 유지합니다.
  • 마지막으로, 부모 셀과 자식 셀 사이에 빈 그리드 셀이 있는 경우, 빈 셀을 자식 셀과 병합하는 등의 구조 보완 단계를 거칩니다.

[3. 4.] Limitation

3.3. canonicalization의 한계를 언급

  • Canonicalization의 목표는 모든 표 구조 주석에 적용 가능한 것이지만, Algorithm 1은 PMCOA 데이터셋의 주석을 위해 특별히 설계된 것으로, 다른 데이터셋의 표를 Canonicalization하려면 추가적인 가정이 필요하며, 이는 이 연구의 범위를 벗어남을 밝힘.
  • Canonicalization은 오류 없는 주석을 보장하지 않음.
  • Canonicalization 이후에도 남아 있는 문제들은 다음 단계인 3.5. Quality control을 통해 해결하고자 함.

[3. 5.] Quality control

품질 관리를 통해 데이터의 명확성과 일관성을 높이는 단계

  • overlapping rows or overlapping columns -> 데이터 폐기 처리
  • 원본 XML 주석과 PDF에서 추출한 텍스트 간의 편집 거리를 비교 -> 셀 평균 편집 거리가 0.05를 넘는 표는 오류로 간주하여 폐기
  • PDF 텍스트를 정답 데이터로 간주 -> 각 단어가 표 내부의 그리드 셀과 겹치는 비율이 0.9 미만인 표 폐기
  • 객체 수가 100개를 초과하는 표 폐기
  • PubTables-1M은 셀 수준에서 주석을 검증하여 일관성을 보장하는 최초의 데이터셋임을 강조

[3. 6.] Dataset statistics and splits

데이터 통계와 수를 나타내는부분으로, 자세한 리뷰 생략

  • TSR 데이터셋
    • 훈련용 표: 758,849개
    • 검증용 표: 94,959개
    • 테스트용 표: 93,834개
  • TD 데이터셋
    • 훈련용 페이지: 460,589개
    • 검증용 페이지: 57,591개
    • 테스트용 페이지: 57,125개

4. 제안 모델 Proposed Model

본 논문은 표의 구성 성분을 6개의 객체 클래스로 분류해서 이미지에서 찾아낸 다음 경계 상자로 표시하는 모델링을 수행했습니다. 6개의 객체 클래스는 아래와 같습니다.


  1. table 표 전체
  2. table row 행
  3. table column 열
  4. table column header 행 헤더(머리말)
  5. table projected row header 열 헤더(머리말)
  6. table spanning cell 확장 셀
  7. The intersection of each pair of table column and table row objects can be considered to form a seventh implicit class, table grid cell. -> 모든 행렬의 교차 부분은 'grid cell'이라는 7번째 추가 object로 간주할 수 있음

Fig 4. 클래스 6개 예시


To demonstrate the proposed dataset and the object detection modeling approach, we apply the Detection Transformer (DETR) [2] to all three TE tasks. We train one DETR model for TD and one DETR model for both TSR and FA. For comparison, we also train a Faster R-CNN [16] model for the same tasks.

TD, TSR+FA 2가지 과업에 DETR을 이용해 학습을 시키고, Faster-R CNN과 성능을 비교합니다.

All models use a ResNet-18 backbone pretrained on ImageNet with the first few layers frozen. We avoid custom engineering the models and training procedures for each task, using default settings wherever possible to allow the data to drive the result.
  • 모든 모델은 ResNet-18 사전학습 백본 사용, 초반의 몇 레이어는 freeze
  • 모델 커스터마이징을 안 한 이유 : 데이터가 결과를 주도하도록 하기 위해 (이해는 하지만 개인적으로 아쉬운 부분)

5. 실험 Experiments

모델링 결과

Faster R-CNN, DETR 성능을 비교해 본 결과 DETR의 성능가 더 좋았으며, Canonical 데이터의 중요성을 강조하고 있습니다.

평가 지표 (metrics)
For assessing TSR performance, we report the table content accuracy metric (AccCont), which is the percentage of tables whose text content matches the ground truth exactly for every cell, as well as several metrics for partial table correctness, which use different strategies to give credit for correct cells when not all cells are correct. For partial correctness, we use the F-score of the standard adjacent cell content metric [5] and the recently proposed GriTS metrics [19].
  • TSR 성능 평가 : 각 셀의 텍스트 내용이 정답과 정확히 일치하는 표의 비율 AccCont
  • 부분적 정확도 평가 : 표준 인접 셀 내용 지표의 F-score와 최근 제안된 GriTS 지표
GriTS

GriTS(이하 그리츠) 수식을 확인해 보니, F-score와 같은 것이라고 해석해도 무방할 것 같습니다. Image Segmentation에서 자주 사용되는 Dice Score와도 일맥상통하구요. 

Compared to other metrics for TSR, this formulation better captures the two-dimensional structure and ordering of cells of a table when comparing tables. 

다른 지표랑 비교했을 때 그리츠는 표를 비교할 때 표의 이차원 구조와 셀의 순서를 더 잘 반영하고, 기타 등등 여러 장점이 있다고 하네요. 

AccCont

AccCont는 논문에 수식이 따로 없길래, gpt 4o한테 수식을 써달라고 했더니, 이렇게 써주네요 (ㅋㅋㅋㅋㅋ) 나름 직관적입니다. 일반적인 Accuracy(정확도) 개념과 거의 유사하다고 봐도 무방할 것 같습니다.


6. 결론 Conclusion

  • 비정형 문서의 표 추출을 위한 새로운 데이터셋인 PubTables-1M을 소개
  • 과세분화 문제를 해결하기 위해 새로운 정형화 절차를 제안, 이를 통해 모델 성능이 크게 향상됨을 입증
  • DETR을 사용하여 표 추출 작업에서 최첨단 성능을 달성할 수 있음을 보임

(7장 Future Work는 생략하겠습니다.)




마무리

https://github.com/microsoft/table-transformer

 

GitHub - microsoft/table-transformer: Table Transformer (TATR) is a deep learning model for extracting tables from unstructured

Table Transformer (TATR) is a deep learning model for extracting tables from unstructured documents (PDFs and images). This is also the official repository for the PubTables-1M dataset and GriTS ev...

github.com

테이블 트랜스포머 팀 최신 뉴스(깃허브)에 따르면, PubTables-1M과 다른 데이터셋을 가지고 학습한 pre-trained model TATR-v1.1을 공개했다고 밝히고 있습니다. (2023년 8월 22일자)

https://huggingface.co/bsmock/TATR-v1.1-All

 

bsmock/TATR-v1.1-All · Hugging Face

Model Card for TATR-v1.1-All This repo contains the model weights for TATR (Table Transformer) v1.1, trained on the PubTables-1M and FinTabNet.c datasets, using the training details in the paper: "Aligning benchmark datasets for table structure recognition

huggingface.co

해당 허깅페이스 페이지에 가면 모델 카드를 확인하실 수 있는데요.

추후 해당 모델을 사용해서 직접 Table Detection을 실행해본 뒤 추가 포스팅을 하도록 하겠습니다.



이번 테이블 트랜스포머 논문 리뷰를 통해 Table Detection을 수행할 때 필요한 데이터의 특성, 레이블링 방법, 생소한 평가지표까지 전체적인 흐름을 파악할 수 있었습니다. 본 논문은 2021년 발표된 '데이터셋' 중심 논문인 만큼, 다음 번에는 새로운 '모델 구조'를 제안하는 최신 논문을 리뷰하고 코드로 구현하는 작업을 수행해보고자 합니다.

수리링의 Table Detection 정복 과정을 지켜봐 주세요!

감사합니다 :-)

[주의] 본 포스팅은 수리링이 직접 U-Net 논문 원문을 읽고 리뷰한 내용을 담았으며, 참고 문헌이 있는 경우 출처를 명시하였습니다. 본문 내용에 틀린 부분이 있다면 댓글로 말씀해 주시고, 포스팅을 출처 없이 불법 공유하지 말아주시기 바랍니다. 감사합니다.


U-Net: Convolutional Networks for BiomedicalImage Segmentation

https://arxiv.org/pdf/1505.04597

이미지 세그멘테이션(image segmentation)에서 빼놓을 수 없는 근본 모델 유넷. 유넷은 픽셀 기반으로 이미지를 분할하여 구분하는 모델로, 많은 최신 모델 속에서 그 구조가 사용되며 활약하고 있습니다.

유넷은 ISBI cell tracking challenge 2015 대회에서 등장한 모델로, 세포 이미지로부터 뛰어난 세그멘테이션 성능을 보여주며 우승을 차지했습니다. 놀라운 점은, 이 대회에서 제공된 학습 데이터가 고작 이미지 30장이었다고 합니다. 저는 논문 리뷰를 마치고서야 이 사실을 알게 되어서, 논문에서 계속 데이터 수가 부족했다고 우는 소리를 하는 이유가 있었구나.....! 대박적이다...! 라는 생각을 했습니다.

따라서 유넷 논문을 처음 공부하시는 분들께서는, 유넷이 어떻게 이러한 한계를 극복하며 뛰어난 segmentation을 구현할 수 있었는지에 주목하면서 리뷰를 해보시면 좋을 것 같습니다.

https://hpc.nih.gov/apps/UNet.html




Abstract

In this paper, we present a network and training strategy that relies on the strong use of data augmentation to use the available annotated samples more efficiently.

초록에서는 주어진 데이터를 더욱 효율적으로 사용하기 위해 data augmentation - 데이터 증강을 통한 네트워크와 학습 전략을 제시하겠다고 밝히고 있습니다. 

The architecture consists of a contracting path to capture context and a symmetric expanding path that enables precise localization. 

U넷의 네트워크 구조는 크게 2가지 path로 구성됩니다.

  1. 수축 경로 'contracting path' : capture context - 넓은 범위에서 이미지의 주요한 특징과 의미 추출
  2. 확장 경로 'expanding path' : 정교한 localization - 앞에서 추출한 의미를 위치정보와 결합하여 각 픽셀마다 어떤 객체에 속하는지를 구분
  3. (+) 'bottleneck' 연결 구간 : 수축 경로와 확장 경로를 연결 (논문에 언급되어 있지 않지만 흔히 보틀넥이라고 칭합니다.)
We show that such a network can be trained end-to-end from very few images and outperforms the prior best method (a sliding-window convolutional network) on the ISBI challenge for segmentation of neuronal structures in electron microscopic stacks.

구조를 그렇게 설계했더니 아주 적은 수의 이미지로도 end-to-end 학습이 가능했을 뿐더러 기존에 sliding-window 형식의 CNN구조를 사용하고 있던 베스트 모델보다도 성능이 훨씬 뛰어났다는 이야기를 하고 있습니다.

end-to-end 딥러닝이 뭔지 궁금하신 분께서는 아래 유튜브 동영상을 참고하시면 도움이 될거예요. end-to-end을 실현하려면 데이터가 많이 필요한 것이 핵심인데, 유넷은 이 부분을 augmentation으로 해결했다는 거죠. 어떤 증강기술을 사용했는지는 차차 설명하게 됩니다.


https://youtu.be/ImUoubi_t7s?si=JYQRmitCcbqp2CsD

이제는 이 교수님이 삼촌같이 느껴지네요...
Moreover, the network is fast. Segmentation of a 512x512 image takes less than a second on a recent GPU. 

게다가 처리속도도 아주 빠르다고 합니다.


여기까지 논문의 초록을 살펴봤는데요. 저는 초록에서 강조하고 있는 키워드가 아래와 같은 것으로 정리했습니다.

  • Data Augmentation
  • Contracting path & Expanding path
  • end-to-end 
  • Not a sliding window
  • Outperform, fast

그럼 본격적으로 본문을 살펴보면서 위와 같은 키워드들이 어떻게 설명되는지 살펴보도록 하겠습니다.



Introduction

The typical use of convolutional networks is on classification tasks, where the output to an image is a single class label. However, in many visual tasks, especially in biomedical image processing, the desired output should include localization, i.e., a class label is supposed to be assigned to each pixel.

전형적인 CNN 모델은 이미지를 입력하면, 이미지에 해당하는 하나의 class label이 출력되는 방식으로 '분류'작업을 수행합니다. 그런데 실제로 많은 과업에서 이렇게 이미지 전체에 해당하는 하나의 레이블이 필요한 경우보다는, localization을 포함한 결과가 필요한 경우가 많습니다. 즉, 이미지 전체가 아닌 이미지 내부의 각 픽셀에 해당하는 labeling이 필요한 거죠.

위의 예시에서 맨 왼쪽은 "이 사진은 고양이 사진이다!"라고 전체에 대한 레이블링을 수행하였습니다. 하지만 localization은 모든 픽셀에 대해서 레이블링을 수행합니다. 그래서 그 옆의 그림처럼 이 사진의 어떤 부분은 고양이고, 또 다른 부분은 잔디이고, 이렇게 다양한 결과값을 출력할 수가 있는 것입니다.

Moreover, thousands of training images are usually beyond reach in biomedical tasks.

특히 바이오메디컬(생의학) 분야에서는 데이터 수가 부족한 경우가 많다는 것도 고려할 필요가 있는데요. 레이블링을 의사같은 전문가가 해야하기 때문에, dog-cat 분류같이 아무나 할수 있는게 아니라는 이유에서 그렇다고 합니다. 대회에 참가해서 30장 데이터로 승부를 봐야 했던 유넷처럼 말이죠......... (아니 근데 아무리 그래도 30장은 좀 너무했다)

Hence, Ciresan et al. [1] trained a network in a sliding-window setup to predict the class label of each pixel by providing a local region (patch) around that pixel as input. First, this network can localize. Secondly, the training data in terms of patches is much larger than the number of training images. The resulting network won the EM segmentation challenge at ISBI 2012 by a large margin.

유넷 이전 다수의 모델은 sliding window를 적용했습니다. sliding window를 적용하면 하나의 이미지로부터 여러 개의 patch가 생기면서 데이터 수 부족 현상을 해결할 수 있었기 때문이죠.

출처 : https://www.mathworks.com/help/vision/ug/anchor-boxes-for-object-detection.html

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it is quite slow because the network must be run separately for each patch, and there is a lot of redundancy due to overlapping patches. Secondly, there is a trade-off between localization accuracy and the use of context. Larger patches require more max-pooling layers that reduce the localization accuracy, while small patches allow the network to see only little context. More recent approaches [11,4] proposed a classifier output that takes into account the features from multiple layers. Good localization and the use of context are possible at the same time.

그런데 sliding window를 적용하면 계산량이 많아지면서 전체 네트워크가 느려진다는 단점이 있습니다. 게다가, localization accuracy와 use of context - 즉 전체와 부분 사이의 tradeoff가 발생하는 문제점도 있었는데요.

드디어 그 유명한 유넷의 구조가 언급됩니다. 

In this paper, we build upon a more elegant architecture, the so-called “fully convolutional network” [9]. We modify and extend this architecture such that it works with very few training images and yields more precise segmentations; see Figure 1. 

유넷 페이퍼에서는 이러한 문제점들을 해결하기 위해 U모양의 "fully convolutional network"를 제안합니다. 적은 수의 트레이닝 이미지 데이터로도 학습이 잘 되고, 정확한 segmentation이 가능하도록 말이죠.

The main idea in [9] is to supplement a usual contracting network by successive layers, where pooling operators are replaced by upsampling operators. Hence, these layers increase the resolution of the output. 

핵심 아이디어는 초록에서 살펴본 바와 같이 contracting - expanding network구조를 사용하는 것입니다. 입력된 이미지는 contracting network의 연속적인 레이어 구조를 거치며 사이즈는 줄어들고 채널 수는 늘어납니다. 이어서 expanding network의 연속적인 레이어 구조에서 pooling 대신 upsampling을 거치며 사이즈가 다시 커지고, 채널 수는 줄어드는데요. 

In order to localize, high resolution features from the contracting path are combined with the upsampled output. A successive convolution layer can then learn to assemble a more precise output based on this information.

One important modification in our architecture is that in the upsampling part we have also a large number of feature channels, which allow the network to propagate context information to higher resolution layers. As a consequence, the expansive path is more or less symmetric to the contracting path, and yields a 
u-shaped architecture.

Feature 1 이미지에서 회색 화살표를 보시면 대칭 구조를 이루며 레이어들이 서로 짝을 이루고 있습니다. contracting path에서 추출한 Feature map의 정보가 업샘플링 과정에서 skip-connection 방식으로 결합되는 과정을 도식화한 것입니다.

논문에서 'skip-connection'이라는 용어가 직접적으로 언급되지는 않지만, 이러한 방식을 많은 사람들이 그렇게 명명하고 있습니다. 스킵 연결방식을 사용해서 expanding path의 콘볼루션 레이어는 contracting path로부터 정보를 제공받게 되고, 보다 정확한 출력을 조합하는 방법을 학습할 수 있게 됩니다. 깊은 레이어 구조를 거치며 다양한 정보가 손실될 가능성이 있는데, 그런 점을 skip-connection을 사용하여 보완해 학습이 잘 되도록 구조를 설계한 것이라고 보시면 되겠습니다.

The network does not have any fully connected layers and only uses the valid part of each convolution
, i.e., the segmentation map only contains the pixels, for which the full context is available in the input image. This strategy allows the seamless segmentation of arbitrarily large images by an overlap-tile strategy (see Figure 2). 

유넷 아키텍처는 기본적으로 fully connect layers로 이루어져 있지 않습니다. 대신, 앞에서 살펴본 바와 같이 모든 레이어가 Convolution(fully convolutional layers)으로 이루어져 있어요. 또 유넷 네트워크는 각 컨볼루션 연산에서 유효한 부분(valid part)만을 사용합니다. 이는 입력 이미지의 가장자리를 패딩 없이 처리하는 방식을 의미하는데요, 따라서 결과적으로 출력 이미지의 크기가 입력 이미지보다 작아지게 되고, 모든 출력 픽셀은 입력 이미지의 전체 컨텍스트(문맥 정보)를 갖게 됩니다.

저는 여기서 처음에 들었던 의문이.... '패딩 없이 처리'를 한다고 해서 어떻게 전체 컨텍스트 정보를 갖게 된다는 것인가? 라는 거였어요. 패딩을 사용 안하면 안하는거지, 그걸 굳이 저렇게 거창하게 말할 필요가 있나.. 싶었거든요. 이 부분은 바로 이어서 언급되는 '오버랩 타일 전략'을 살펴보면서 간단히 해결할 수 있었습니다.

(+) 그런데 실제로 코드로 구현하는 경우 계산의 편의를 위해 valid padding 대신 same padding을 사용하는 경우가 많은 것 같습니다.

유넷은 이미지의 가장자리에 패딩을 사용하지 않는 대신, 오버랩-타일(overlap-tile) 전략이라는 걸 사용합니다. 이 방식은 특히 큰 이미지를 분할할 때 유용한데요. 경계 영역에서의 정보 손실을 최소화할 수 있는 장점이 있다고 언급하고 있습니다. 아래 그림을 함께 보시죠.

잘 보면, 가장자리 부분이 내부 이미지를 상하좌우 대칭으로 미러링하여 채워져 있습니다.

To predict the pixels in the border region of the image, the missing context is extrapolated by mirroring the input image. This tiling strategy is important to apply the network to large images, since otherwise the resolution would be limited by the GPU memory.

U-Net에서 설명하는 타일링 전략(overlap-tile strategy)은 하나의 큰 이미지를 여러 개의 작은 타일로 나누어 처리하는 방식입니다. 이 때 경계 부분에서 패딩을 사용하는 대신, 입력 이미지를 반사하는 미러링(mirroring)하는 방법을 사용하고, 타일끼리 서로 겹치는 부분이 발생하기 때문에 '오버랩'이라는 단어가 앞에 붙게 되었어요. 이 오버랩 타일링 전략을 통해 유넷은 이미지 경계에서 패딩을 사용했을때 발생할 수 있는 정보 손실을 최소화할 수 있었고, 덕분에 정확한 경계 예측을 할 수가 있었어요.

생각해 보면 segmentation을 수행할 때 경계값을 명확하게 파악할 필요성이 있다고 납득이 되더라고요. 이 타일링 전략은, 앞에 서론에서 잠깐 살펴보았던 슬라이딩 윈도우(sliding window)의 문제점을 해결한 전략이라고 할 수 있겠습니다. 이러한 타일링 전략은 특히 큰 고해상도의 이미지에 유넷 네트워크를 적용할 때 중요했다고 하는데, 그렇지 않으면 해상도가 GPU 메모리에 의해 제한될 수가 있었다고 하네요.

https://youtu.be/O_7mR4H9WLk?si=9aNrE8Olud-7bq-Z

슬라이딩 윈도우와 타일링 전략, 미러링 부분에 추가 보충이 필요하신 분들께서는 위의 유투브 영상을 참고하시는 것을 추천합니다. 시각적으로 설명이 깔끔하게 잘 되어 있어서 저도 도움을 많이 받았습니다 :)


As for our tasks there is very little training data available, we use excessive data augmentation by applying elastic deformations to the available training images. This allows the network to learn invariance to such deformations, without the need to see these transformations in the annotated image corpus.

U-Net은 고작 30장밖에 되지 않는 데이터셋으로 성능을 뽑아야 했기 때문에, augmentation을 빡세게 굴렸다! 라고 밝히고 있습니다. 특히 그 중에서도 elastic deformation을 사용했다고 밝히고 있어요.

https://towardsdatascience.com/review-u-net-biomedical-image-segmentation-d02bf06ca760
https://towardsdatascience.com/review-u-net-biomedical-image-segmentation-d02bf06ca760

Pixel이 랜덤하게 다른 방향으로 뒤틀리도록 변형하는 'elastic deformation'을 통해 자연스럽고 현실세계에 있을법한 새로운 데이터를 만들어내는 의의가 있었다고 해요. 위의 그림을 보면 elastic deformation을 거쳤을 때 기본 이미지의 특성은 어느정도 유지되면서 이미지가  다양하게 변형되는 것을 볼 수 있습니다. 논문에 따르면 이런 방법의 변형이 특히 biomedical 생의학 분야에서 의미있다는 연구 결과가 있었다며 참고 문헌을 밝히고 있네요. (세포라는 게 아무래도 원래 찌글짜글 거리니까…..)

Another challenge in many cell segmentation tasks is the separation of touching objects of the same class; see Figure 3. To this end, we propose the use of a weighted loss, where the separating background labels between touching cells obtain a large weight in the loss function. The resulting network is applicable to various biomedical segmentation problems. In this paper, we show results on the segmentation of neuronal structures in EM stacks (an ongoing competition started at ISBI 2012), where we outperformed the network of Ciresan et al. [1]. Furthermore, we show results for cell segmentation in light microscopy images from the ISBI cell tracking challenge 2015. Here we won with a large margin on the two most challenging 2D transmitted light datasets.

세포 분할 작업에서 해결해야 하는 또 다른 도전 과제가 있는데요. 바로 같은 클래스의 서로 접촉하는 객체를 분리하는 것입니다. 위의 그림을 보면, 여러 개의 같은 세포가 서로 매우 가깝게 접촉해 있는 것을 확인할 수 있습니다. 얘네가 서로 다른 개체임에도 불구하고 label이 같아서 하나의 큰 뭉텅이로 간주될 위험성이 있단 말이죠.

유넷은 이러한 문제점을 해결하고자 접촉하는 세포 사이의 배경 레이블에 큰 가중치를 부여하는 weighted loss를 제안합니다. 탐지된 객체가 서로 가까이 붙어 있을 수록 그 사이의 배경이 큰 weight값을 갖게 되는 원리인데요. 위의 Fig. 3. 그림에서 d를 보시면 되고, 세포 사이의 거리가 가까울수록 배경이 빨간 값을 가지게 되는 점에 주목하시면 되겠습니다. 이 방법을 적용하면서 뛰어난 segmentation 성능을 확보하게 되었고, 이 덕분에 대회를 우승할 수 있었다고 밝히고 있었습니다.



Network Architecture

다음으로 유넷 네트워크의 구조에 대해서 조금 더 자세히 살펴보도록 하겠습니다. 이 부분은, 유넷 그림의 구조를 보면서 스스로 설명할 수 있어야 합니다.

Contracting path (left side)

The contracting path follows the typical architecture of a convolutional network. It consists of the repeated application of two 3x3 convolutions (unpadded convolutions), each followed by a rectified linear unit (ReLU) and a 2x2 max pooling operation with stride 2 for downsampling. At each downsampling step we double the number of feature channels.

Contracting path는 기본적인 콘볼루션 네트워크 구조로 되어 있습니다. (3x3) 필터를 사용해서 패딩 없이 콘볼루션을 계산한 뒤 ReLU를 걸어주는 과정2번 반복하고, (2x2) 사이즈와 stride 2의 max poolng을 적용하여 다운샘플링을 진행합니다. 이렇게 한 셋트의 다운샘플링을 진행할 때마다 채널의 수는 2배씩 증가하게 됩니다. 그림에선 다운샘플링을 4번 했네요.

이렇게 이미지의 사이즈가 줄어드는 과정에서 이미지의 특징이 추출되고, 채널이 늘어나는 과정에서 이미지의 다양한 특징을 확보하게 됩니다.

Expansive path (right side)

Every step in the expansive path consists of an upsampling of the feature map followed by a 2x2 convolution (“up-convolution”) that halves the number of feature channels, a concatenation with the correspondingly cropped feature map from the contracting path, and two 3x3 convolutions, each followed by a ReLU. The cropping is necessary due to the loss of border pixels in every convolution.

Expansive path에서는 (2x2) 필터 사이즈의 up-convolution을 통해 특징 맵(feature map)의 사이즈를 키우는 업샘플링(upsampling)을 수행하게 되는데, 이 과정에서 반대로 채널의 수는 다시 절반으로 점차 줄어들게 됩니다.

이후에 contracting path에서 해당 단계의 크롭된(cropped) 특징 맵과 연결(concatenation)한다는 이야기가 나오는데요. 이 부분은 구조도에서 회색 화살표를 확인하시면 됩니다. 위의 그림에서 빨간색 표시한 부분을 잘 보면, Contracting path의 (64 * 64 * 512)이 copy and crop으로 Extracting path의 (56 * 56 * 512)와 concatenate되어 (56 * 56 *  1024)가 됩니다. 64와 56이 사이즈가 맞지 않으니 64를 56으로 crop해주어야 했을 것이고, 이후 필터 512장과 512장이 concat으로 이어붙어 1024장이 된 것이죠.
논문에서는 언급되지 않은 용어이지만 흔히들 이 과정을 Skip-connection이라고 부르는데, element-wise summation이 아닌 concatenate를 사용하는 이유에 대해서는 아래 포스팅을 참고해보시면 도움이 되실 거예요.


https://at0z.tistory.com/164

 

Skip connection에서 add(summation) vs concatenation

U-Net architecture를 공부하다가 어떤 네트워크는 image size와 channel이 동일해서 add를 하기도 하고, 어떤 네트워크는 image size는 동일하지만 channel이 달라 (보통 2배 차이남) concatenation해 주기도 한다.

at0z.tistory.com


저는 여기서 앞서 살펴본 '미러링 타일 전략'과 개념 혼돈이 오면서 헷갈리는 시기가 있었습니다. upsampling과 downsampling 과정에서 콘볼루션을 계산할 때, 패딩을 사용하는 대신 미러링을 사용하는 것인가? 라는 오개념이 자리잡은 것인데요. 저와 비슷한 분을 위해 짚고 넘어가자면, 미러링은 이미지를 여러 개의 타일로 나누고 난 다음에, 그 각각의 타일 테두리에 미러링을 추가해 주어 경계 정보를 보완해주는 것으로, 그렇게 완성된 타일 이미지에 upsampling과 downsampling의 u-net 구조가 적용되는 것입니다. 즉, 

  1. 전체 이미지를 작은 타일로 나누어서 사용한다
  2. 이때 각각의 작은 타일의 가장자리에는 미러링이 적용된다
  3. 이렇게 미러링된 하나의 패치 이미지에 각각 u넷 구조가 적용된다

이렇게 순서를 이해하시면 되겠습니다 :)


 At the final layer a 1x1 convolution is used to map each 64- component feature vector to the desired number of classes. In total the network has 23 convolutional layers.

Skip-connection 이후에 두 번의 3x3 컨볼루션과 각각의 ReLU 활성화 함수를 적용하게 되는데요. 전체 네트워크는 총 23개의 컨볼루션 레이어로 구성되고, Expanding path의 마지막 레이어에서는 1x1 컨볼루션을 사용하여 결과값의 필터 수를 원하는 값으로 조정합니다. 

(노란색 부분) 마지막 1x1 콘볼루션

To allow a seamless tiling of the output segmentation map (see Figure 2), it is important to select the input tile size such that all 2x2 max-pooling operations are applied to a layer with an even x- and y-size.


seamless tiling을 위해서는 입력 타일 크기를 신중하게 선택할 필요가 있는데, 특히 모든 2x2 max-pooling 연산이 x와 y 크기가 짝수인 레이어에 적용되도록 해야 한다고 밝히고 있습니다. 이는 각 풀링 연산이 끝나는 레이어의 크기가 짝수여야 다음 연산에서도 크기가 정확히 맞아 떨어지기 때문인데요.

논문에서 표현하는 'seamless tiling'이란, U-Net이 큰 이미지를 처리할 때 '타일링 전략'을 사용해서 하나의 이미지를 여러 개의 작은 타일로 나누었던 것을, 마지막에 다시 이어 붙이는 작업이 매끄럽고 이쁘게 잘 되는 것을 의미한다고 보시면 돼요. 마치 원래부터 하나의 이미지였던 것처럼 이쁘게 잘 이어지기 위해서는 각 풀링 연산이 끝나는 레이어의 크기가 짝수가 되도록 잘 맞춰주라! 라는 겁니다. 



Training

The input images and their corresponding segmentation maps are used to train the network with the stochastic gradient descent implementation of Caffe [6].
  • 인풋 이미지와 그 이미지의 segmentation map 이미지가 네트워크 학습 데이터로 사용되었다고 합니다.
  • SGD(stochastic gradient descent)를 이용하여 학습을 진행했습니다.
Due to the unpadded convolutions, the output image is smaller than the input by a constant border width. To minimize the overhead and make maximum use of the GPU memory, we favor large input tiles over a large batch size and hence reduce the batch to a single image. Accordingly we use a high momentum (0.99) such that a large number of the previously seen training samples determine the update in the current optimization step.

 U-Net은 '타일링 전략'을 사용한다고 앞서 밝혔는데요. 콘볼루션을 계산할 때 패딩 없이 진행이 되기 때문에 이미지가 너무 작은 경우 경계값 정보가 많이 손실되어 학습이 제대로 이루어지지 않을 위험성을 가지고 있습니다. 따라서 여러 개의 작은 타일로 나누는 것보다 타일 크기를 크게 해서 전체 타일 수가 적은 것을 선호한다고 밝히고 있습니다.

그런데 큰 타일 크기를 사용하면 그만큼 SGD(Stochastic Gradient Descent) 배치 수는 줄어야 합니다. GPU 메모리가 한정되어 있기 때문이죠. 배치 수가 줄어든다면 그만큼 학습할 수 있는 데이터 다양성도 함께 줄어드는 단점이 있습니다. 다르게 말하자면 경사 하강법 과정에서 그래디언트 변동성이 커질 수 있게 되고, 이는 최적화 과정을 불안정하게 만들 수가 있는 것이죠.

따라서 논문에서는 이러한 문제점을 해결하기 위해 높은 모멘텀 momentum(0.99)을 사용한다고 밝히고 있습니다. 높은 모멘텀을 사용하면 이러한 변동성을 완화하고, 모델이 더 안정적으로 최적화를 할 수 있기 때문인데요. 즉 큰 타일 크기 사용으로 인한 불안정성을 높은 모멘텀이 보완해주는 효과가 있는 것입니다.

모멘텀은 Local Minimum에 빠지는 경우를 대처할 수 있다는 특징이 있으며, 높은 모멘텀은 현재 그래디언트 업데이트에 이전 단계들의 그래디언트 영향을 더 많이 반영합니다. 모멘텀에 대한 더 깊은 이해가 필요하시면, 아래 포스팅을 참고하시면 도움이 될 것입니다.


https://heytech.tistory.com/382

 

[Deep Learning] 최적화(Optimizer): (1) Momentum

본 포스팅에서는 딥러닝 최적화(optimizer) 기법 중 하나인 Momentum의 개념에 대해 알아봅니다. 먼저, Momentum 기법이 제안된 배경인 경사 하강법(Gradient Descent)의 한계점에 대해 다루고 알아보도록 하

heytech.tistory.com


Training에 사용한 U-Net의 Loss Function은 각 픽셀에 대한 에너지 함수(E)의 총합으로 구성되는데요. 에너지 함수는 다음과 같은 과정으로 계산됩니다.

𝑙은 특정 클래스의 레이블을 의미
특정 클래스 𝑙에 대한 로그 확률
loss function!

  1. 먼저 각 픽셀의 예측값에 소프트맥스(SoftMax) 함수 P를 적용해 예측값을 확률값으로 변환해 줍니다. 여기서 𝑙은 특정 클래스의 레이블을 의미합니다.
  2. 그런 다음, 특정 클래스 𝑙에 대한 로그 확률을 계산합니다. 예측 확률은 0과 1 사이의 값을 가지게 되므로, 예측 확률이 1에 가까워질수록 로그 값은 0에 가까워집니다. 반대로 예측 확률이 0에 가까울수록 로그 값은 매우 큰 음수가 되겠죠.
  3. 이제 각 픽셀의 실제 클래스 레이블과 예측된 확률 값을 비교하여 손실 값을 계산합니다. 이를 위해 교차 엔트로피 손실(Cross-Entropy Loss)을 사용합니다. 교차 엔트로피 손실 함수, 즉 '에너지 함수(E)'는 위와 같은데요. 특이하게 크로스 엔트로피에 픽셀 고유의 weight 𝑤(𝑥)을 곱함으로써 픽셀의 Loss값을 계산하는 것을 볼 수가 있습니다. 
  4. 𝑤(𝑥) 식은 아래 수식과 같이 나타냅니다. 경계선(border)라인에 더 강한 학습을 시키기 위해서 가우시안 분포(Gaussian distribution)을 가정하고 경계선 근처의 픽셀에 더 높은 가중치를 부여하여 학습이 집중되도록 했다고 합니다.

마지막으로 모든 픽의 에너지 함수(E)를 합산하여 전체 이미지에 대한 손실을 계산합니다.

마지막 부분에는 초기 가중치 설정의 중요성을 강조하며, 가중치를 Gaussian 분포로부터 표준편차가 루트 2/𝑁인 값으로 초기 설정하였다고 합니다. 예를 들어, 3x3 convolution과 이전 레이어에 64개의 feature 채널이 있는 경우, 𝑁은  9⋅64 = 576이 되는 거죠. 이 부분은 가볍게 읽고 지나가겠습니다.


3.1. Data Augmentation

Data augmentation is essential to teach the network the desired invariance and robustness properties, when only few training samples are available. In case of microscopical images we primarily need shift and rotation invariance as well as robustness to deformations and gray value variations. Especially random elastic deformations of the training samples seem to be the key concept to train a segmentation network with very few annotated images. We generate smooth deformations using random displacement vectors on a coarse 3 by 3 grid. The displacements are sampled from a Gaussian distribution with 10 pixels standard deviation. Per-pixel displacements are then computed using bicubic interpolation. Drop-out layers at the end of the contracting path perform further implicit data augmentation.

논문에서 언급한 data augmentation 방식은 총 4가지 입니다.

  • Shift
  • Rotation
  • Gray value
  • Elastic Deformation

이 중에서도 Elastic Deformation이 key 역할을 했다고 밝히고 있습니다. 이 부분은 앞에서 짚고 넘어간 바가 있으니 추가 설명은 생략하겠습니다.



Experiments

UNet의 우수한 성능으로 각종 대회에서 최고 결과를 도출했다는 파트로, 이부분은 자세한 정리를 생략하겠습니다.



Conclusion

드디어! 마지막 결론입니다.

The u-net architecture achieves very good performance on very different biomedical segmentation applications. Thanks to data augmentation with elastic deformations, it only needs very few annotated images and has a very reasonable training time of only 10 hours on a NVidia Titan GPU (6 GB). We provide the full Caffe[6]-based implementation and the trained networks. We are sure that the u-net architecture can be applied easily to many more tasks.

U-Net 아키텍처는 매우 다양한 생의학적 세그멘테이션 응용에서 매우 우수한 성능을 발휘하는데, Elastic deformation을 이용한 Data Augmentation형을 이용한 데이터 증강 덕분에 가능했다고 밝히고 있습니다. 유넷의 성능 확보에 정말 핵심적인 역할을 한 게 분명합니다.

마지막으로 U-Net 아키텍처는 더 많은 작업에 쉽게 적용될 수 있을 것이라고 자신감을 나타내며 논문이 마무리되는데, 실제로 U-Net은 Biomedical 분야뿐만 아니라 이미지 segmentation이 필요한 다양한 최신 모델에 두루 널리 쓰이며 사랑받고 있습니다.



본 논문 리뷰를 통해 다양한 최신 모델에서 자주 보이는 U-Net의 구조와 원리에 대해서 이해할 수 있어서 영광이었습니다 :-) 다음에도 좋은 논문 리뷰로 찾아뵙겠습니다. 감사합니다!


 

VGGNet

VGGNet(Visual Geometry Group Network)은 2014년 1000개의 이미지 클래스를 분류하는 이미지넷 이미지 인식 대회에서 준우승을 한 모델입니다. 옥스포드 대학의 연구팀 VGG에 의해 개발되었다고 하는데요. 이번 포스팅에서는 VGGNet 논문에서 중요한 내용을 살펴보고 직접 코드화하는 과정을 정리해 작성해 보겠습니다.


<VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION>
논문 링크 : https://arxiv.org/pdf/1409.1556

VGG의 핵심 장점은 다음과 같습니다.

1. convolution의 depth를 깊게 구성
2. 연산량을 획기적으로 줄여 좋은 성능 확보
3. 깊은 레이어 구조를 통해 Activation function을 여러 번 집어넣어서 비선형성을 더 많이 확보

왜 이런 장점이 있는지 논문 내용과 함께 살펴봅시다.


2.1. Architecture

VGG 이전의 기존 CNN 모델들은 주로 Convolution 레이어와 Pooling 레이어를 번갈아 연속적으로 사용하는 것이 일반적이었습니다. VGGNet은 이러한 기존의 틀에서 벗어나 Convolution을 2번 또는 3번 연속해서 쌓은 뒤 Pooling 레이어를 배치하는 새로운 구조를 제시합니다. 

VGG16 구조

위 사진은 대표적인 VGG16모델의 레이어 설계도입니다. 책이나 인터넷에서 쉽게 찾아볼 수 있는 그림인데요. 보이는 것처럼 파란색의 Convolution 레이어가 연속해서 2-3번 쌓이고, 이어서 빨간색 max pooling layer가 배치된 것을 볼 수 있습니다. 논문 2.1 Architecture에 관한 부분을 함께 살펴보도록 하겠습니다.

the input to our ConvNets is a fixed-size 224 × 224 RGB image
  • 입력 이미지의 shape은 (224, 224, 3)인 것을 알 수 있습니다.
The image is passed through a stack of convolutional (conv.) layers, where we use filters with a very small receptive field: 3 × 3 (which is the smallest size to capture the notion of left/right, up/down, center). (중략) The convolution stride is fixed to 1 pixel
  • 콘볼루션 레이어를 여러겹 쌓고 필터는 (3 x 3) 작은 사이즈로 고정하여 사용한다고 명시하고 있습니다. VGG 이전의 CNN 모델들은 전통적으로 필터 사이즈가 7, 9, 11 정도로 큰 것이 일반적이었다고 합니다. 그래서 사이즈가 3인 필터는 'very small'이라고 표현되는 것으로 보입니다.
  • 콘볼루션 레이어의 stride는 1픽셀로 고정됩니다.
Max-pooling is performed over a 2 × 2 pixel window, with stride 2.
  • 사용된 Maxpooling의 필터 사이즈와 stride 모두 (2, 2)인 것을 알 수 있습니다.
A stack of convolutional layers is followed by three Fully-Connected (FC) layers: the first two have 4096 channels each, the third performs 1000- way ILSVRC classification and thus contains 1000 channels (one for each class). The final layer is the soft-max layer.
  • CNN 레이어 이후에는 순서대로 4096 - 4096 - 1000개의 필터가 사용된 FC(Fully-Connected) 레이어가 3번 배치되었습니다.
  • 마지막 필터가 1000개인 이유는 VGG모델이 총 1000개의 이미지 클래스를 분류하기 때문입니다.
  • 마지막 레이어의 activation function로는 소프트맥스가 사용된 것을 알 수 있습니다.

2.2. Configuration

다음으로 여러 가지 버전의 VGG모델을 표현된 논문의 Table 1, 2를 함께 살펴보겠습니다.

The width of conv. layers (the number of channels) is rather small, starting from 64 in the first layer and then increasing by a factor of 2 after each max-pooling layer, until it reaches 512. 
  • 콘볼루션 레이어의 필터의 수는 64개로 작게 시작해서 마지막으로 512가 될때까지 2의 배수로 늘려 가겠다고 말하고 있습니다.
The convolutional layer parameters are denoted as “conv[receptive field size]-[number of channels]”. The ReLU activation function is not shown for brevity.
※ [2-1] All hidden layers are equipped with the rectification (ReLU (Krizhevsky et al., 2012)) non-linearity.
  • Table 1에서 표현된 레이어 수식(conv0-000형식)을 읽을 수 있어야 합니다. 예를 들어 conv3-256의 경우 필터 사이즈 (3x3)인 콘볼루션 레이어가 256장 쌓인 것으로 해석할 수 있습니다.
  • 간결한 표현을 위해 아래 배치도(Table 1)에서 활성함수 ReLU는 생략해서 표현되었으나, 논문 2.1 Architecture에 언급되었듯이 모든 히든레이어에는 ReLU가 적용되었습니다.

Table 1

  • 우리가 맨 위에서 살펴본 빨강파랑 레이어 구조도는 VGG16모델입니다. Convolution 레이어와 Dense 레이어를 합해 16개의 레이어가 사용되었습니다. 여기에서 레이어가 3개 늘어나면 VGG19(E모델)이 됩니다.
  • VGG16에 해당하는 모델 C와 D의 차이점은 3겹의 콘볼루션 레이어에서 마지막에 필터 사이즈 1짜리 레이어가 쓰였느냐 3짜리가 쓰였느냐 정도로 구분이 되네요.

VGG16 구조
Table 2

In Table 2 we report the number of parameters for each configuration. In spite of a large depth, the number of weights in our nets is not greater than the number of weights in a more shallow net with larger conv. layer widths and receptive fields (144M weights in (Sermanet et al., 2014)).
  • 테이블 2에는 백만 단위의 파라미터 수가 표현이 되어 있는데요. VGG16에 해당하는 모델 C-D의 경우 1억 3천만 개 정도의 파라미터를 찾아야 하네요.
  • 그렇다면 사이즈 3의 작은 필터를 사용한 3개의 콘볼루션 레이어를 연속적으로 사용해서 얻은 이점이 무엇일까요?

Table 2 아래에 중요한 내용이 담겨있습니다.

So what have we gained by using, for instance, a stack of three 3×3 conv. layers instead of a single 7×7 layer? First, we incorporate three non-linear rectification layers instead of a single one, which makes the decision function more discriminative. Second, we decrease the number of parameters
예: (10, 10) 이미지에 (7, 7) 필터 1번 적용
* 콘볼루션 후 최종 사이즈 : (4, 4)
* 찾아야 할 파라미터  : (7, 7) -> 49개
예 : (10, 10) 이미지에 (3, 3) 필터 3번 적용
* 콘볼루션 후 최종 사이즈 : (4, 4)
* 찾아야 할 파라미터 : (3, 3) 3개 -> 9 * 3 -> 27개
  • 최종적으로 얻는 이미지의 사이즈는 (4, 4)로 동일한데 찾아야 할 파라미터의 수는 49개에서 27개로 줄어드는 것을 확인할 수 있습니다.
  • 콘볼루션 레이어를 연속해서 쌓는 VGG 구조를 통해 찾아야 할 파라미터 수를 획기적으로 줄여 연산량을 줄이고 성능을 개선할 수 있다는 것입니다.
  • 또한 한 번의 콘볼루션 레이어만 추가했을 때보다 세 번의 연속적인 콘볼루션 레이어를 추가하게 되면서 비선형성을 더욱 강조해 모델의 유연성을 확보할 수 있게 되었고 이 역시 성능 개선으로 이어지게 되었습니다.

코드화

VGG16 모델 D - 코드로 구현해보기

from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout

필요한 라이브러리를 호출합니다.

# 논문 VGG16 D모델 그대로 설계해보기
    
model_D_VGG_origin = tf.keras.Sequential([
    Conv2D(64, 3, input_shape = (224, 224, 3), padding = "same", activation = "relu"),
    Conv2D(64, 3, padding = "same", activation = "relu"),
    MaxPool2D(pool_size = 2, strides = 2),
    Conv2D(128, 3, padding = "same", activation = "relu"),
    Conv2D(128, 3, padding = "same", activation = "relu"),
    MaxPool2D(pool_size = 2, strides = 2),
    Conv2D(256, 3, padding = "same", activation = "relu"),
    Conv2D(256, 3, padding = "same", activation = "relu"),
    Conv2D(256, 3, padding = "same", activation = "relu"),
    MaxPool2D(pool_size = 2, strides = 2),
    Conv2D(512, 3, padding = "same", activation = "relu"),
    Conv2D(512, 3, padding = "same", activation = "relu"),
    Conv2D(512, 3, padding = "same", activation = "relu"),
    MaxPool2D(pool_size = 2, strides = 2),
    Flatten(),
    Dense(4096, activation = "relu"),
    Dense(4096, activation = "relu"),
    Dense(1000, activation = "softmax") # 1000가지 이미지를 분류하는 대회였음
])


VGG16 모델 D - Fashion Mnist에 맞게 튜닝하기

VGG16 Model D를 튜닝해서 fashion_mnist 분류모델을 구현하는 코드로 작성해 보겠습니다.

  • 논문 상 입력 데이터는 (224, 224, 3)이지만 Fashion Mnist의 데이터는 (28, 28, 1)입니다. 28을 224로 늘리는 것은 해상도가 너무 깨지고 특징이 소실되므로 의미가 없다는 판단 하에, 입력 부분을 28로 튜닝해서 사용하기로 결정했습니다.
  • MaxPool 횟수를 4회에서 3회로 줄이기로 했습니다. 이미지 사이즈가 가로 세로 (28, 28)이기 때문에 논문 그대로 4번 사용하면 사이즈가 소실될 수도 있습니다.
  • 논문 속 레이블은 1000개이지만 Fashion Mnist의 레이블은 10개입니다. 따라서 마지막 Dense 레이어의 필터 수를 1000에서 10으로 줄이겠습니다.
import tensorflow as tf

# 데이터 불러오기
fashion_mnist = tf.keras.datasets.fashion_mnist
(X_train, y_train), (X_test, y_test) = fashion_mnist.load_data()

# 정규화
X_train, X_test = X_train/255. , X_test/255.

# 3D를 4D로 변환
X_train = X_train.reshape(-1, 28, 28, 1)
X_test = X_test.reshape(-1, 28, 28, 1)
# 논문 VGG16 D모델 -> 패션 엠니스트에 맞는 모델로 바꾸어보기
    
model_D_VGG_fashion = tf.keras.Sequential([
    Conv2D(64, 3, input_shape = (28, 28, 1), padding = "same", activation = "relu"),
    Conv2D(64, 3, padding = "same", activation = "relu"),
    MaxPool2D(pool_size = 2, strides = 2),
    Conv2D(128, 3, padding = "same", activation = "relu"),
    Conv2D(128, 3, padding = "same", activation = "relu"),
    MaxPool2D(pool_size = 2, strides = 2),
    Conv2D(256, 3, padding = "same", activation = "relu"),
    Conv2D(256, 3, padding = "same", activation = "relu"),
    Conv2D(256, 3, padding = "same", activation = "relu"),
    MaxPool2D(pool_size = 2, strides = 2),
    Flatten(),
    Dense(4096, activation = "relu"),
    Dense(4096, activation = "relu"),
    Dense(10, activation = "softmax") # 10가지 이미지로 분류하기
])
model_D_VGG_fashion.summary()

model_D_VGG_fashion.compile(loss = tf.keras.losses.SparseCategoricalCrossentropy(),
                 optimizer = Adam(),
                 metrics = ['accuracy'])
import os

# callbacks
early = tf.keras.callbacks.EarlyStopping(patience = 5)
cp_path = "training/cp-{epoch:04d}.ckpt"
cp_dir = os.path.dirname(cp_path)
cp_callback = tf.keras.callbacks.ModelCheckpoint(cp_path,
                                                 monitor = 'val_loss',
                                                 verbose = 1,
                                                 save_weights_only=True)

# train
history_D_fashion = model_D_VGG_fashion.fit(X_train,
                                            y_train,
                                            validation_split = 0.25,
                                            batch_size = 128,
                                            epochs = 200,
                                            callbacks = [early,cp_callback])

model_D_VGG_fashion.evaluate(X_test, y_test)

# 313/313 [==============================] - 2s 5ms/step - loss: 0.2621 - accuracy: 0.9195
# [0.2621194124221802, 0.9194999933242798]

VGG16모델을 튜닝해서 사용한 결과 단 한 번의 시도만에 0.92에 가까운 valid accuracy를 확보하게 되었습니다 :)


 
 
이것으로 간단하게 살펴본 VGG 논문 리뷰를 마치겠습니다. 감사합니다 :)

+ Recent posts